The fractional nonlinear impurity: A Green function approach

نویسندگان

چکیده

We use a lattice Green function approach to study the stationary modes of linear/nonlinear (Kerr) impurity embedded in periodic one-dimensional where we replace standard discrete Laplacian by fractional one. The energies and mode profiles are computed closed form, for different exponents strengths. lie outside linear band whose bandwidth decreases steadily as exponent decreases. For any values, there is always single bound state while nonlinear case, up two states possible, strengths above certain threshold. energy (or that upper one), becomes directly proportional strength at large transmission plane waves also form several exponents, various observe fractionality tends increase overall transmission. selftrapping transition shifts lower nonlinearity values decreased. In both cases, nonlinear, trapping zero strength, which can be explained near-degeneracy spectrum limit small exponent.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quasi-linear approach : exact solution for nonlinear Green function

A formal way to obtain a recently found solution of the problem of nonlinear interaction of two non-concentric spherical waves in terms of quasi-linear approach is described.

متن کامل

Numerical approach for solving a class of nonlinear fractional differential equation

‎It is commonly accepted that fractional differential equations play‎ ‎an important role in the explanation of many physical phenomena‎. ‎For‎ ‎this reason we need a reliable and efficient technique for the‎ ‎solution of fractional differential equations‎. ‎This paper deals with‎ ‎the numerical solution of a class of fractional differential‎ ‎equation‎. ‎The fractional derivatives are described...

متن کامل

A distinct numerical approach for the solution of some kind of initial value problem involving nonlinear q-fractional differential equations

The fractional calculus deals with the generalization of integration and differentiation of integer order to those ones of any order. The q-fractional differential equation usually describe the physical process imposed on the time scale set Tq. In this paper, we first propose a difference formula for discretizing the fractional q-derivative  of Caputo type with order  and scale index . We es...

متن کامل

the effect of a selfregulatory approach on the improvement of efl learners listening comprehension

تاثیر آموزش مهارت خود محوری بر روی ارتقاء مهارت شنیداری زبان آموزان هدف این پژوهش بررسی عوامل موثر در ارتقا مهارت شنیداری زبان آموزان ایرانی بود. در مرحله اول این تحقیق پژوهشگر پس از انجام مصاحبه نود زبان آموز را با استفاده از تست ایلتس انتخاب شدند. برای بررسی عوامل عوامل موثر در ارتقا مهارت شنیداری زبان آموزان ایرانی از دو نوع فیلم ویرایش شده و ویرایش نشده استفاده گردید.برای انجام تح...

A Novel Effective Approach for Solving Fractional Nonlinear PDEs

The present work introduces an effective modification of homotopy perturbation method for the solution of nonlinear time-fractional biological population model and a system of three nonlinear time-fractional partial differential equations. In this approach, the solution is considered a series expansion that converges to the nonlinear problem. The new approximate analytical procedure depends onl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Physics Letters

سال: 2021

ISSN: ['1873-2429', '0375-9601']

DOI: https://doi.org/10.1016/j.physleta.2021.127737